

THE KINETICS OF THE GAS PHASE

REACTION OF NITROUS ACID WITH OZONE,

10 E. W. Kaiser S. M. Japar

12/23 P-/

This document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22161

(5) DOT-TSC-1201

Prepared for

High Altitude Pollution Program

U.S. DEPARTMENT OF TRANSPORTATION

FEDERAL AVIATION ADMINISTRATION OFFICE OF ENVIRONMENTAL QUALITY WASHINGTON, D.C. 20591

141 250

DDC FILE COPY:

nt

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

				1-
1. Report No.	2. Government Acces	ssion No.	Recipient's Catalog N	10.
FAA-AEQ-77-7				
4. Title and Subtitle		5.	Report Date	
mbe vinetics of the Cas P	basa Danation of		July 1977	
The Kinetics of the Gas P Nitrous Acid with Ozone	hase Reaction of	6.	Performing Organizati	on Code
NICIOUS ACIG WICH OZONE		_		
7. Author(s)		8.	Performing Organization	on Report No.
E. W. Kaiser and S. M. Ja	par			
9. Performing Organization Name and Ad	ldress	10	Work Unit No. (TRAI	S)
Ford Motor Company V P.O. Box 2053		11	. Contract or Grant No	
Dearborn, Michigan 48121		13	. Type of Report and P	
12. Sponsoring Agency Name and Address				eriod Covered
			Final Report	
Department of Transportat Federal Aviation Administ		14 5		
Washington, D.C. 20591	racion	14	. Sponsoring Agency C	ode
15. Supplementary Notes				
16. Abstract				
The kinetics of t				
have been investigated und	der conditions a	pplicable to the	middle stratos	
have been investigated und The decay of nitrous acid	der conditions ap (<0.005 Torr) i	pplicable to the n the presence of	middle stratos excess ozone	sphere.
have been investigated un The decay of nitrous acid (0.4-14 Torr) has been me	der conditions a (<0.005 Torr) is asured at 226	pplicable to the n the presence of nd 300 ⁰ K using a	middle stratos excess ozone mass spectrom	sphere. meter
have been investigated und The decay of nitrous acid	der conditions and (<0.005 Torr) is asured at 226 and atures, the observations	pplicable to the n the presence of nd 300 ^{0°} K using a rved decay rate i	middle stratos excess ozone mass spectrom s independent	sphere. meter
have been investigated un The decay of nitrous acid (0.4-14 Torr) has been med detector. At both temper	der conditions and (<0.005 Torr) is asured at 226 and atures, the obsemperately arises geneous bimolecularises	pplicable to the n the presence of nd 300°K using a rved decay rate i from heterogened lar reaction (1),	middle stratos excess ozone mass spectrom s independent ous reactions,	sphere. meter of
have been investigated un The decay of nitrous acid (0.4-14 Torr) has been med detector. At both temper ozone concentration and ap- rather than from the homos	der conditions and (<0.005 Torr) is asured at 226 and atures, the obsemperately arises geneous bimolecularises	pplicable to the n the presence of nd 300°K using a rved decay rate i from heterogened lar reaction (1),	middle stratos excess ozone mass spectrom s independent ous reactions,	sphere. meter of
have been investigated un The decay of nitrous acid (0.4-14 Torr) has been med detector. At both temper ozone concentration and a rather than from the homos	der conditions at $(<0.005 \text{ Torr})$ is asured at 226° at atures, the obserparently arises geneous bimolecut $(+100)^{10}_{2} + 0^{10}_{3}$ $(-100)^{10}_{10}$	pplicable to the n the presence of and 300° K using a rved decay rate if from heterogeneous reaction (1), $0_3^{\circ} + 0_2^{\circ}$ (1).	middle stratos excess ozone mass spectrom s independent ous reactions,	sphere. meter of
have been investigated un The decay of nitrous acid (0.4-14 Torr) has been med detector. At both temper ozone concentration and a rather than from the homose coefficient. Conservative upper limits entire HNO ₂ decay results	der conditions at $(<0.005 \text{ Torr})$ is asured at 226° at atures, the obserparently arises geneous bimolecut $\frac{1}{2} + 0\frac{1}{3}$ HNO $\frac{1}{2} + 0\frac{1}{3}$ HNO $\frac{1}{2}$ to the value of from reaction (4)	pplicable to the n the presence of and 300° K using a rved decay rate if from heterogeneous car reaction (1), $0_3^{\circ} + 0_2^{\circ}$ (1).	middle stratos excess ozone mass spectrom s independent ous reactions, expected on the stratos of the stratos o	sphere. meter of
have been investigated un The decay of nitrous acid (0.4-14 Torr) has been medetector. At both temper ozone concentration and a rather than from the homo- cetter. Conservative upper limits entire HNO ₂ decay results cm ³ molecule 1 sec ⁻¹ at 30	der conditions at $(<0.005 \text{ Torr})$ it asured at 226° at atures, the obserparently arises geneous bimolecut $\frac{1}{2} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3}$ to the value of from reaction (00° and 226° K results)	pplicable to the n the presence of and 300° K using a rved decay rate if from heterogened lar reaction (1), $0^{\prime\prime}_3 + 0^{\prime\prime}_2$ (1). Calculated heterogenetics, are 1 x 10 ⁻¹⁹ espectively. Cal	middle stratos excess ozone mass spectrom s independent ous reactions, oy assuming the and 5 x 10-19 culations base	sphere. meter of
have been investigated un The decay of nitrous acid (0.4-14 Torr) has been medetector. At both temper ozone concentration and a rather than from the homo coefficient. Conservative upper limits entire HNO ₂ decay results cm ³ molecule 1 sec ⁻¹ at 30 on a simplified mechanism	der conditions a (<0.005 Torr) is asured at 226° as atures, the obserparently arises geneous bimoleculary HNO 2 + 0 1 K HNO 2 +	pplicable to the n the presence of nd 300° K using a rved decay rate if from heterogened lar reaction (1), $0_3^{\circ} + 0_2^{\circ}$ (1). (1), calculated key, are 1×10^{-19} espectively. Calic 10_x° chemistry	excess ozone in mass spectrom is independent ous reactions, by assuming that and 5 x 10-19 culations base indicate that	sphere. meter of at the
have been investigated un The decay of nitrous acid (0.4-14 Torr) has been med detector. At both temper ozone concentration and a rather than from the homosometric Conservative upper limits entire HNO ₂ decay results cm ³ molecule 1 sec ⁻¹ at 30 on a simplified mechanism reaction (17), with a rate	der conditions a (<0.005 Torr) is asured at 226° as atures, the obserparently arises geneous bimolecuth HNO 2 + 0 1 K HNO 2 to the value of from reaction (£00° and 226° K refor stratospheric constant of the	pplicable to the n the presence of and 300° K using a rved decay rate if from heterogeneous lar reaction (1), $0_3^{\circ} + 0_2^{\circ}$ (1). (1), calculated here, are 1×10^{-19} espectively. Calcic 10_x° chemistry magnitude report	excess ozone in mass spectrom is independent ous reactions, by assuming that and 5 x 10-19 culations base indicate that	sphere. meter of at the
have been investigated un The decay of nitrous acid (0.4-14 Torr) has been medetector. At both temper ozone concentration and a rather than from the homo coefficient. Conservative upper limits entire HNO ₂ decay results cm ³ molecule 1 sec ⁻¹ at 30 on a simplified mechanism	der conditions a (<0.005 Torr) is asured at 226° as atures, the obserparently arises geneous bimolecuth HNO 2 + 0 1 K HNO 2 to the value of from reaction (£00° and 226° K refor stratospheric constant of the	pplicable to the n the presence of and 300° K using a rved decay rate if from heterogeneous lar reaction (1), $0_3^{\circ} + 0_2^{\circ}$ (1). (1), calculated here, are 1×10^{-19} espectively. Calcic 10_x° chemistry magnitude report	excess ozone in mass spectrom is independent ous reactions, by assuming that and 5 x 10-19 culations base indicate that	sphere. meter of at the
have been investigated un The decay of nitrous acid (0.4-14 Torr) has been med detector. At both temper ozone concentration and a rather than from the homosometric Conservative upper limits entire HNO ₂ decay results cm ³ molecule 1 sec ⁻¹ at 30 on a simplified mechanism reaction (17), with a rate	der conditions a (<0.005 Torr) is asured at 226° as atures, the obserparently arises geneous bimolecuth HNO 2 + 0 1 K HNO 2 to the value of from reaction (£00° and 226° K refor stratospheric constant of the	pplicable to the n the presence of and 300° K using a rved decay rate if from heterogeneous lar reaction (1), $0_3^{\circ} + 0_2^{\circ}$ (1). (1), calculated here, are 1×10^{-19} espectively. Calcic 10_x° chemistry magnitude report	excess ozone in mass spectrom is independent ous reactions, by assuming that and 5 x 10-19 culations base indicate that	meter of
have been investigated un The decay of nitrous acid (0.4-14 Torr) has been med detector. At both temper ozone concentration and a rather than from the homosometric Conservative upper limits entire HNO ₂ decay results cm ³ molecule 1 sec ⁻¹ at 30 on a simplified mechanism reaction (17), with a rate	der conditions a (<0.005 Torr) is asured at 226° as atures, the obserparently arises geneous bimolecuth HNO 2 + 0 1 K HNO 2 to the value of from reaction (£00° and 226° K refor stratospheric constant of the	pplicable to the n the presence of and 300° K using a rved decay rate if from heterogened lar reaction (1), 0, + 0, (1). (1). (1), are 1 x 10-19 espectively. Calic NOx chemistry magnitude report tratosphere.	middle stratos excess ozone mass spectrom is independent ous reactions, oy assuming that and 5 x 10-19 culations base indicate that and above, is united above, is united above.	meter of at the od
have been investigated un The decay of nitrous acid (0.4-14 Torr) has been med detector. At both temper ozone concentration and a rather than from the homosometric Conservative upper limits entire HNO ₂ decay results cm ³ molecule 1 sec ⁻¹ at 30 on a simplified mechanism reaction (17), with a rate	der conditions a (<0.005 Torr) is asured at 226° as atures, the obserparently arises geneous bimolecuth HNO 2 + 0 1 K HNO 2 to the value of from reaction (£00° and 226° K refor stratospheric constant of the	pplicable to the n the presence of and 300° K using a rved decay rate if from heterogeneous lar reaction (1), $0_3^{\circ} + 0_2^{\circ}$ (1). (1), calculated here, are 1×10^{-19} espectively. Calcic 10_x° chemistry magnitude report	middle stratos excess ozone mass spectrom is independent ous reactions, oy assuming that and 5 x 10-19 culations base indicate that and above, is united above, is united above.	meter of at the od
have been investigated un The decay of nitrous acid (0.4-14 Torr) has been med detector. At both temper ozone concentration and a rather than from the homosometric Conservative upper limits entire HNO ₂ decay results cm ³ molecule 1 sec ⁻¹ at 30 on a simplified mechanism reaction (17), with a rate	der conditions a (<0.005 Torr) is asured at 226° as atures, the obserparently arises geneous bimolecuth HNO 2 + 0 1 K HNO 2 to the value of from reaction (£00° and 226° K refor stratospheric constant of the	pplicable to the n the presence of and 300° K using a rved decay rate if from heterogened lar reaction (1), 0, + 0, (1). (1). (1), are 1 x 10-19 espectively. Calic NOx chemistry magnitude report tratosphere.	middle stratos excess ozone mass spectrom is independent ous reactions, oy assuming that and 5 x 10-19 culations base indicate that and above, is united above, is united above.	meter of at the od
have been investigated until The decay of nitrous acid (0.4-14 Torr) has been medetector. At both temper ozone concentration and a rather than from the homographic than the homographic than the second molecule of the second and a simplified mechanism reaction (17), with a rate to be important in the chemical content of the second molecule of	der conditions a (<0.005 Torr) is asured at 226° as atures, the obserparently arises geneous bimolecuth HNO 2 + 0 1 K HNO 2 to the value of from reaction (£00° and 226° K refor stratospheric constant of the	pplicable to the n the presence of and 300° K using a rved decay rate if from heterogened lar reaction (1), 03 + 02 (1). (1). (1), calculated known are 1 x 10 ⁻¹⁹ espectively. Calculated ic Nown chemistry magnitude report tratosphere.	middle stratos excess ozone mass spectrom is independent ous reactions, by assuming that and 5 x 10-19 culations base indicate that and above, is under the control of the	meter of at the od
have been investigated under the decay of nitrous acid (0.4-14 Torr) has been medetector. At both temper ozone concentration and a grather than from the homograther than from the following that the following the following that the following that the following that the following the following that the following the	der conditions a (<0.005 Torr) it asured at 226° at atures, the obserparently arises geneous bimolecut HNO2 + 03° k HNO2 to the value of from, reaction (00° and 226° K refor stratosphericonstant of the emistry of the stratosphericonstant of the stratosphericonstant of the stratosphericonstant of the emistry of the stratosphericonstant o	pplicable to the n the presence of nd 300° K using a rved decay rate if from heterogened lar reaction (1), 0, + 0, (1). (1). (1), are 1 x 10-19 espectively. Calic NOx chemistry magnitude report tratosphere.	middle stratos excess ozone mass spectrom is independent ous reactions, oy assuming the and 5 x 10-19 culations base indicate that and above, is under the control of the c	meter of at the od anlikely
have been investigated until The decay of nitrous acid (0.4-14 Torr) has been medetector. At both temper ozone concentration and a rather than from the homographic than from the homographic than the second and a simplified mechanism reaction (17), with a rate to be important in the chest of the second and	der conditions a (<0.005 Torr) it asured at 226° at atures, the obserparently arises geneous bimolecut. HNO 2 + 0 1 HNO 2 HNO	pplicable to the n the presence of nd 300° K using a rved decay rate if from heterogened lar reaction (1), 0, + 0, (1). (1). (1), are 1 x 10-19 espectively. Calic NOx chemistry magnitude report tratosphere.	middle stratos excess ozone mass spectrom is independent ous reactions, oy assuming that and 5 x 10-19 culations base indicate that and above, is used above, is used above in the control of the control	at the od anlikely othe U.S.
have been investigated under the decay of nitrous acid (0.4-14 Torr) has been medetector. At both temper ozone concentration and a grather than from the homograther than from the following that the following the following that the following that the following that the following the following that the following the	der conditions a (<0.005 Torr) it asured at 226° at atures, the obserparently arises geneous bimolecut. HNO 2 + 0 1 HNO 2 HNO	pplicable to the n the presence of nd 300° K using a rved decay rate if from heterogened lar reaction (1), 0, 4 0, 2 (1). Calculated by, are 1 x 10-19 espectively. Calculated ic NOx chemistry magnitude report tratosphere. 18. Distribution Statement in public through	middle stratos excess ozone mass spectrom is independent ous reactions, oy assuming that and 5 x 10-19 culations base indicate that ded above, is used the National Total Technology available to the National Total Technology assuming the mass of the National Total Technology assuming the mass of the National Total Technology assuming the national Technology assuming the mass of the National Technology assuming the national Technology as a national Technolo	at the od anlikely othe U.S.
have been investigated until The decay of nitrous acid (0.4-14 Torr) has been medetector. At both temper ozone concentration and a rather than from the homographic than from the homographic than the second and a simplified mechanism reaction (17), with a rate to be important in the chest of the second and	der conditions a (<0.005 Torr) it asured at 226° at atures, the obserparently arises geneous bimolecut. HNO 2 + 0 1 HNO 2 HNO	pplicable to the n the presence of nd 300° K using a red decay rate if from heterogened lar reaction (1), 0 4 0 2 (1). (1), are 1 x 10-19 espectively. Calic NO'x chemistry magnitude report tratosphere. 18. Distribution Statement in public through Information Ser	middle stratos excess ozone mass spectrom is independent ous reactions, by assuming that and 5 x 10-19 culations base indicate that ded above, is used the National Twice, Springfi	at the od anlikely for the U.S. Sechnical
have been investigated until The decay of nitrous acid (0.4-14 Torr) has been medetector. At both temper ozone concentration and a rather than from the homographic than from the homographic than the second and a simplified mechanism reaction (17, with a rate to be important in the chest of the second and	der conditions a (<0.005 Torr) it asured at 226° at atures, the obserparently arises geneous bimolecut HNO2 + 03° k HNO2 to the value of from reaction (00° and 226° K refor stratosphericonstant of the emistry of the second	pplicable to the n the presence of and 300° K using a reved decay rate if from heterogened lar reaction (1), 0, + 0, (1). (1), are 1 x 10-19 espectively. Calcic NOx chemistry magnitude report tratosphere. 18. Distribution Statement This document if public through Information Servirginia 22161	middle stratos excess ozone mass spectrom is independent ous reactions, or assuming that and 5 x 10-19 culations base indicate that and above, is used above, is used above, is used above, is used above.	at the od anlikely the U.S. Sechnical seld,
have been investigated until The decay of nitrous acid (0.4-14 Torr) has been medetector. At both temper ozone concentration and a rather than from the homographic than from the homographic than the second and a simplified mechanism reaction (17), with a rate to be important in the chest of the second and	der conditions a (<0.005 Torr) it asured at 226° at atures, the obserparently arises geneous bimolecut. HNO 2 + 0 1 HNO 2 HNO	pplicable to the n the presence of and 300° K using a reved decay rate if from heterogened lar reaction (1), 0, + 0, (1). (1), are 1 x 10-19 espectively. Calcic NOx chemistry magnitude report tratosphere. 18. Distribution Statement This document if public through Information Servirginia 22161	middle stratos excess ozone mass spectrom is independent ous reactions, or assuming that and 5 x 10-19 culations base indicate that ded above, is used the National Truice, Springfi	at the od anlikely for the U.S.
have been investigated under the decay of nitrous acid (0.4-14 Torr) has been medetector. At both temper ozone concentration and agrather than from the homographic than from the homographic than from the homographic than the second and the second	der conditions a (<0.005 Torr) it asured at 226° at atures, the obserparently arises geneous bimolecut HNO2 + 03° k HNO2 to the value of from reaction (00° and 226° K refor stratosphericonstant of the emistry of the second	pplicable to the n the presence of nd 300° K using a rved decay rate if from heterogened lar reaction (1), 03 + 02 (1). Construction (1), 03 + 02 (1). Construction (1), are 1 x 10 ⁻¹⁹ espectively. Calculated held, are 1 x 10 ⁻¹⁹ espectively. Calculated held held held held held held held he	middle stratos excess ozone mass spectrom is independent ous reactions, or assuming that and 5 x 10-19 culations base indicate that and above, is used above, is used above, is used above, is used above.	at the od anlikely the U.S. Sechnical eld,

PREFACE

We wish to express our appreciation to ${\tt H.}$ Niki for his sound advice during these experiments.

PRECEDING PAGE BLANK-NOT FILMED

TABLE OF CONTENTS

		Page
	Preface	v
	Table of Contents	vii
	List of Figures	viii
	List of Tables	viii
ı.	Introduction	1
II.	Experimental	1
II.	Results and Discussion	6
IV.	Upper Limit to the Bimolecular Rate Constant for	
	the HNO ₂ - O ₃ Reaction	12
v.	Implications for Stratospheric Chemistry	12
	References	17

LIST OF FIGURES

			Page
Figure	1.	Schematic representation of the experimental apparatus	4
Figure	2.	The decay of HNO in the presence of excess ozone at 300°K	8
Figure	3、	The exponential decay of HNO in the presence of excess ozone at 300°K	9
		LIST OF TABLES	
Table :	1.	Rate constants and concentrations for reactions involved in stratospheric NO_X chemistry	2
Table	2.	Decay of ${\rm HNO}_2$ in the presence of ${\rm O}_3$	10
Table	3.	Evaluation of equations (I)-(III) as a function of the value of \mathbf{k}_1	14
Table	4.	Fractional distribution of NO among its major components as a function of k_1	16

I. Introduction

In recent years the chemistry of the stratosphere has been studied in detail (1) because of possible perturbations on that chemistry by anthropogenic pollution sources such as the SST (2) nuclear weapons testing in the atmosphere, (3) and the use of chlorofluorocarbons. (4) The main stratospheric constituent, in terms of environmental impact on Earth, is ozone, and below about 45 km the concentration of stratospheric ozone is coupled very strongly to the NO chemistry cycle. The basic reactions in the postulated NO cycle (1,2)are summarized in Table 1. Schiff (5) has recently assessed the importance of reactions (1) and (2) in the overall cycle. These reactions involve the formation of nitric acid and nitrous acid by paths previously considered unimportant. If the rates of these reactions are large, Schiff has demonstrated that they can markedly reduce the stratospheric concentrations of NO, NO, and HNO, by converting them to HNO3, which is much less reactive in the atmosphere. This, in turn, could affect the stratospheric ozone balance to a degree dependent on the magnitude of the rate constants for reactions (1) and (2). An estimate of the rate constant for reaction (2), which is an order of magnitude below the upper limit employed by Schiff, has recently been published. The only discussion of reaction (1) in the literature is a statement by Cox (7) that "... (parts per million) levels of O, and HNO, do not react at a measurable rate over a period of hours." We have carried out experiments to determine the rate of this latter reaction under conditions applicable to the stratosphere. The results of these measurements will allow a better assessment of the importance of reactions (1) and (2) in stratospheric chemistry.

II. Experimental

The experimental apparatus is presented schematically in Fig. 1. The reactions were carried out in a 1-liter Pyrex reactor located inside an evacuated chamber. The reactor was equipped with a multi-holed glass inlet tube and a thermocouple well. The contents of the reactor were sampled through a 0.05 mm diameter nozzle orifice located at the apex of a cone. The resultant molecular beam first passed into the reactor chamber (pressure $\sim 5 \times 10^{-5}$ Torr) where it was modulated by a tuning fork chopper operated at 400 Hz. It then entered the detector chamber (pressure $\sim 2 \times 10^{-8}$ Torr) which contained an electron impact ionizer coupled to the quadrupole mass analyzer. The ionizer was operated at an electron bombardment energy of 50eV during the experiments.

Table 1 - Rate Constants and Concentrations for Reactions Involved in Stratospheric NO Chemistry \mathbf{x}

took and	Reaction	Rate Constant (Rate Constant (cm molecule sec unless stated otherwise) 22 km* Reference	ated otherwise) Reference
(1) HNO	$HNO_2 + O_3 = HNO_3 + O_2$			iage los edd figau figau
(2) HO ₂	$_{2}^{1} + NO_{2} = HNO_{2} + O_{2}$	2.0 × 10 ⁻¹²	2.0 × 10 ⁻¹²	(a)
(3) NO	+ 02	3.7×10^{-15}	4.4×10^{-15}	(c)
(4) NO ₂	$+0 = NO + 0^{2}$	9.1 x 10 ⁻¹²	9.1×10^{-12}	(c)
(5) NO ₂ +	+ hv =	$7.0 \times 10^{-3} \text{ sec}^{-1}$	$7.0 \times 10^{-3} \text{ sec}^{-1}$	(þ)
ON (9)	ONOH = HO +	1.3 x 10 ⁻¹²	4.8×10^{-13}	(c)
(7) NO ₂	$NO_2 + OH = HNO_3$	1.5 x 10 ⁻¹²	7.8×10^{-13}	(b) page 5-114
(8) HNO	11	6.5 x 10 ⁻⁴ sec	$6.5 \times 10^{-4} \text{ sec}^{-1}$	(f)
ONH (6)	$HNO_3 + hv = NO_2 + OH$	$4.1 \times 10^{-7} \text{ sec}^{-1}$	$3.5 \times 10^{-6} \text{ sec}^{-1}$	(b) page 5-117
(10) HNO	$HNO_3 + OH = H_2O + NO_3$	1.3×10^{-13}	1.3×10^{-13}	(0)
(11) HO ₂	+ NO = NO ₂ + OH	2.0×10^{-13}	2.0 × 10 ⁻¹³	(c)
ed ed		* $T = 218^{\circ}K$; $M = 1.3 \times 10^{18}$	$M = 1.3 \times 10^{18} \text{ molecules cm}^{-3}$	
		** $T = 226^{\circ}K$; $M = 3.8 \times 10^{17}$	$M = 3.8 \times 10^{17}$ molecules cm ⁻³	
Species		Density (cm ⁻³)	(cm ⁻³)	
6				(e)
0		4 x 10 ⁶	6 × 10 ⁷	(b) page 3-91
но		8 × 10 ⁵	2×10^6	(b) page 3-95
но		1 × 10 ⁷	1 × 10 ⁷	(b) page 3-96

Table 1 - (continued)

References

- (a) Reference 5
- (b) Reference 1b
- (c) "Chemical Kinetic and Photochemical Data for Modelling Atmospheric Chemistry," NBS Technical Note 866, R. F. Hampson, Jr. and D. Garvin, Eds., U. S. Department of Commerce (June, 1975).
- (d) Reference 2
- (e) "A proposed midlatitude ozone model for the U.S. Standard Atmosphere 1975".A.J. Kreuger and R.A. Minzner, NASA Document x-912-74 (1974).
- (f) Reference (c), above. Recently, $\cos^{(g)}$ has investigated the absorption spectrum of HNO_2 and has estimated rate coefficients for the photolysis of HNO_2 from that data and solar photon fluxes at each altitude: at 20 km k₈ $^{\circ}$ 1.2 x 10⁻³ sec⁻¹; at 30 km k₈ $^{\circ}$ 1.4 x 10⁻³ sec⁻¹. Both values are 24 hour averages.
- (g) R.A. Cox and R.G. Derwent, Journal of Photochemistry 6, 23-34 (1976/77).

Figure 1. Schematic representation of the experimental apparatus.

- 4 -

The modulated ion signal was detected by a lock-in amplifier.

With the exception of N_2O_5 , the parent mass peaks of all reactants and products could be observed with the mass spectrometer. The observed relative ion intensities in the fragmentation patterns of pure nitrous and nitric acids are: I(47 amu) = 1.0, I(46 amu) \leq 0.23, I(30 amu) \leq 4.0; and I(63 amu) = 1.0, I(46 amu) = 46.3, I(30 amu) = 11.6, respectively. The fragmentation pattern for nitrous acid could not be determined in the static system employed in this work because it existed only in the presence of large excesses of NO and NO₂, which have prominent mass peaks at 30 amu and 46 amu, respectively. The numbers presented above were obtained from flow measurements. (8b) The observed relative ion intensities in the fragmentation pattern of ozone are I(48 amu) = 1.0, I(32 amu) = 0.46, and I(16 amu) = 0.072. The detector as described yielded a signal-to-noise ratio of 1.0 with a 1 second time constant at reactor concentrations of \sim 3 x 10⁻⁴ Torr for nitrous acid and ozone, and \sim 3 x 10⁻³ Torr for nitric acid.

Ozone was prepared by electric discharge of oxygen and was stored on silica gel at -78° C after the excess oxygen was pumped off. Nitrous acid was prepared in equilibrium with NO, NO₂ and water in a 2-liter bulb. The HNO₂ concentration in the bulb was calculated from the equilibrium constant for reaction (12):

$$NO + NO_2 + H_2 O = 2HNO_2$$
 $K_{eq} = 1.42 \times 10^{-3} \text{ Torr}^{-1}$ (12).

Typical concentrations at equilibrium in the storage bulb were $[NO] = [NO_2] = 2-6$ Torr; $[H_2O] = 3-8$ Torr; $[HNO_2] = 0.2-0.5$ Torr. The equilibria involving N_2O_4 and N_2O_3 were not included in the calculations as they are not significant at these concentrations. Nitric acid for use in the determination of its fragmentation pattern was prepared as a high purity (>90%) gas by reacting potassium nitrate with outgassed concentrated sulfuric acid under vacuum.

Experiments were performed at two reactor temperatures, 226° and 300°K. The room temperature experiments were carried out as follows. High purity ozone (>90% as determined by the pressure increase accompanying electric discharge decomposition of a small portion of the sample) was introduced into the reactor from the silica gel trap at pressures up to ~12 Torr. The reactor was then pressurized with Ar (Matheson Ultra High Purity) to 16 Torr total pressure as measured by a calibrated pressure transducer. An aliquot of the equilibrium

HNO₂ mixture was introduced into a calibrated 12 cm³ volume which was then pressurized to one atmosphere with Ar. The resulting sample was injected into the reactor, and the HNO₂ decay was monitored at 47 amu. The initial nitrous acid concentration in the reactor was 0.002-0.005 Torr. When the nitrous acid decay was complete, the concentrations of the remaining materials were determined from the intensities of the observed mass peaks.

For the experiments carried out at 226°K, the procedure was somewhat different. The reactor was first cooled below the experimental temperature by passing gaseous nitrogen, precooled to near 78°K, through the reactor. At temperatures as low as 200°K, the reactor warmed up at a rate of 2°minute⁻¹ after the nitrogen flow was stopped. While the reactor was warming up to 226°K, the nitrous acid mixture was introduced into it as outlined above. Ozone, at the desired concentration, was stored in a second bulb pressurized to 40 Torr with Ar. When the reactor temperature reached 226°K, the ozone in the storage bulb was injected into the reactor, with the time for complete injection of the ozone sample being less than 3 seconds. The data acquisition time was less than two minutes, during which time the temperature rise was never more than 5°.

III. Results and Discussion

Mixing a nitrous acid sample with excess ozone leads to the instantaneous conversion of essentially all of the NO and NO $_2$ to N $_2$ O $_5$ and HNO $_3$, via the following reactions:

Thus, the expected equilibrium HNO₂ concentration in the reactor in the presence of excess ozone is near zero, as determined by equilibrium (12). The HNO₂ concentration can decay to its near zero final value by two established reactions in addition to the possible reaction between HNO₂ and ozone. These reactions are: (a) HNO₂ self-decomposition via reaction (-12). This reaction has been found to be heterogeneous, (8a) with a rate of decomposition which is very sensitive to the condition of the reactor walls; (b) reaction of nitrous

acid with nitric acid via reaction (13). (8b) This reaction may have both

$$HNO_3 + HNO_2 \longrightarrow 2NO_2 + H_2O$$
 (13)

heterogeneous and homogeneous components. The self-decay rate of ${\rm HNO}_2$ can be decreased by more than a factor of 100 in the absence of ${\rm O}_3$ by pretreating the reactor with ${\rm O}_3$ 5 Torr of ${\rm H}_2{\rm O}$, which is then pumped out prior to the experiment. Pretreatment with as little as 0.5 Torr of ${\rm O}_3$ immediately reactivates the surface.

 300° K Results. In order to evaluate the contributions to HNO_2 decay from all the possible reaction paths, a series of experiments was carried out with variations in ozone, and coincidentally, nitric acid concentrations. In addition, since water was always present during the experiments from the HNO_2 equilibrium mixture, a comprehensive study of its effect on the HNO_2 decay rate over a wide range of water concentrations was conducted.

The decay of HNO_2 in the presence of excess ozone is shown in Fig. 2 for a typical run. There was a rapid ($^{\circ}$ 1 second) buildup of HNO_2 resulting from its introduction into the reactor, a 2-4 second period during which the HNO_2 concentration remained stable, and then a continuous decay with a half-life of 15-25 seconds. The magnitude of the decay in the 47 amu mass peak after ozone injection was equal, within experimental error, to the observed magnitude of the initial nitrous acid signal when the equilibrium aliquot was injected in the absence of ozone. This indicates that the observed decay in the 47 amu peak after mixing with ozone is a result of the disappearance of HNO_2 . The HNO_2 injection was accompanied by an immediate (<1 second) drop in the ozone concentration resulting from the reactions which form $\mathrm{N}_2\mathrm{O}_5$, and the mass peaks at 46 amu and 30 amu were simultaneously converted into a ratio characteristic of $\mathrm{N}_2\mathrm{O}_5$. The nitric acid concentration slowly increased due to the $\mathrm{N}_2\mathrm{O}_5$ - $\mathrm{H}_2\mathrm{O}$ reaction, with the rate being dependent on experimental conditions.

The HNO₂ decays were always pseudo-first order in HNO₂ concentration for at least the first 75% of the decay. Representative exponential decays are shown in Fig. 3. The pseudo-first order rate constants, k', derived from the exponential decay portion of each of the experiments, are presented in Table 2. Also shown are the ozone, water and nitric acid concentrations determined after the HNO₂ decay was complete. In the Table, the individual groups of

Figure 2. The decay of HNO_2 monitored at its parent mass peak (47 amu), in the presence of excess ozone at 300°K. The initial reactor concentrations were: $[O_3] = 10.4$ Torr; $[\mathrm{HNO}_2] \sim 0.003$ Torr; $[\mathrm{H}_2\mathrm{O}] \leq 0.2$ Torr; $[\mathrm{Ar}] = 14.5$ Torr. The increase in the baseline after the addition of the nitrous acid mixture arose from an increase in $\mathrm{N}_2\mathrm{O}_5$ and/or HNO_3 , both of which have a fragment peak at 47 amu due to $\mathrm{^{15}NO}_2^+$.

Figure 3. The exponential decay of HNO_2 in the presence of excess O_3 at $300^{\circ}K$ (Series A in Table 2). $[O_3] = 10.4$ Torr (D); $[O_3] = 6.0$ Torr (O); $[O_3] = 0.97$ Torr (Δ). In each case, $[HNO_2]_{\circ} = 0.003$ Torr and $[H_2O] = 0.2$ Torr. The total pressure for each run was increased to 25 Torr with Ar. The solid line represents the best fit to all three sets of data with a pseudo-first order rate constant k = 0.047 sec⁻¹.

Table 2 - Decay of HNO_2 in the Presence of O_3^*

T			To 7	[H ₂ O]	[HNO ₃]	k'	k ₁ **
(A) 6.0 0.2 0.016 0.050 10.4 0.2 0.015 0.047 1.4 x 10 ⁻¹⁹ 300 0.51 3.0 0.100 0.040 8.6 3.1 0.090 0.046 1.6 x 10 ⁻¹⁹ 300 0.82 4.0 0.037 0.040 1.2 4.2 0.028 0.043 (C) 6.7 4.0 0.055 0.063 9.1 4.0 0.039 0.036 1.6 x 10 ⁻¹⁹ 300 0.45 8.1 0.055 0.054 (D) 4.0 8.3 0.061 0.041 6.0 8.1 0.055 0.040 1.0 1.0 x 10 ⁻¹⁹ 300 0.66 14.2 0.088 0.10 (E) 2.2 14.1 0.078 0.10 4.5 14.7 0.070 0.12 300 1.4 14.1 0.067 0.037 (F) 1.5 7.8 0.10 0.060 1.5 4.0 0.091 300 6.2 0.2 0.031 0.12 6.2 3.0 0.065 0.11 6.3 5.8 5.0 0.049 (G) 5.8 5.0 0.049 1.5 4.0 0.097 0.046 300 6.2 0.2 0.031 0.12 6.2 3.0 0.065 0.11 6.3 5.8 5.0 0.049 0.091 6.6 6.8 0.079 0.10 6.7 5.8 5.0 0.049 0.091 6.8 1.5 0.2 0.1 0.15 6.9 8.8 0.2 0.1 0.25 6.9 8.9 0.0050 0.060 226 1.5 0.2 0.1 0.31 (H) 9.8 0.2 0.1 0.22 5.1 x 10 ⁻¹⁹ 226 0.4 0.2 0.1 0.21 226 0.4 0.2 0.1 0.21 226 0.4 0.2 0.1 0.21 226 0.4 0.2 0.1 0.21 226 0.4 0.2 0.1 0.21 226 0.7 0.3 0.2 0.1 0.21 226 0.7 0.3 0.2 0.1 0.21 226 (7) 0.3 0.2 0.1 0.21 226 (7) 0.3 0.2 0.1 0.21 226 (7) 0.3 0.2 0.1 0.21 226 (7) 0.3 0.2 0.1 0.21 226 (7) 0.3 0.2 0.1 0.21 226 (7) 0.3 0.2 0.1 0.21 226 (7) 0.3 0.2 0.1 0.21 226 (7) 0.3 0.2 0.1 0.21 226 (7) 0.3 0.2 0.1 0.21 226 (7) 0.3 0.2 0.1 0.21 226 (7) 0.3 0.2 0.1 0.21			[37				
(A) 6.0 0.2 0.016 0.050 10.4 0.2 0.015 0.047 1.4 x 10 ⁻¹⁹ 300 0.51 3.0 0.100 0.040 8.6 3.1 0.090 0.046 1.6 x 10 ⁻¹⁹ 300 0.82 4.0 0.037 0.040 1.2 4.2 0.028 0.043 (C) 6.7 4.0 0.055 0.063 9.1 4.0 0.039 0.036 1.6 x 10 ⁻¹⁹ 300 0.45 8.1 0.055 0.054 (D) 4.0 8.3 0.061 0.041 6.0 8.1 0.055 0.040 1.0 1.0 x 10 ⁻¹⁹ 300 0.66 14.2 0.088 0.10 (E) 2.2 14.1 0.078 0.10 4.5 14.7 0.070 0.12 300 1.4 14.1 0.067 0.037 (F) 1.5 7.8 0.10 0.060 1.5 4.0 0.091 300 6.2 0.2 0.031 0.12 6.2 3.0 0.065 0.11 6.3 5.8 5.0 0.049 (G) 5.8 5.0 0.049 1.5 4.0 0.097 0.046 300 6.2 0.2 0.031 0.12 6.2 3.0 0.065 0.11 6.3 5.8 5.0 0.049 0.091 6.6 6.8 0.079 0.10 6.7 5.8 5.0 0.049 0.091 6.8 1.5 0.2 0.1 0.15 6.9 8.8 0.2 0.1 0.25 6.9 8.9 0.0050 0.060 226 1.5 0.2 0.1 0.31 (H) 9.8 0.2 0.1 0.22 5.1 x 10 ⁻¹⁹ 226 0.4 0.2 0.1 0.21 226 0.4 0.2 0.1 0.21 226 0.4 0.2 0.1 0.21 226 0.4 0.2 0.1 0.21 226 0.4 0.2 0.1 0.21 226 0.7 0.3 0.2 0.1 0.21 226 0.7 0.3 0.2 0.1 0.21 226 (7) 0.3 0.2 0.1 0.21 226 (7) 0.3 0.2 0.1 0.21 226 (7) 0.3 0.2 0.1 0.21 226 (7) 0.3 0.2 0.1 0.21 226 (7) 0.3 0.2 0.1 0.21 226 (7) 0.3 0.2 0.1 0.21 226 (7) 0.3 0.2 0.1 0.21 226 (7) 0.3 0.2 0.1 0.21 226 (7) 0.3 0.2 0.1 0.21 226 (7) 0.3 0.2 0.1 0.21 226 (7) 0.3 0.2 0.1 0.21	(K)					(sec)	(cm molecule sec)
10.4 0.2 0.015 0.047 1.4 x 10 ⁻¹⁹ 300 0.51 3.0 0.100 0.040 8.6 3.1 0.090 0.046 1.6 x 10 ⁻¹⁹ 300 0.82 4.0 0.037 0.040 1.2 4.2 0.028 0.043 (C) 6.7 4.0 0.055 0.063 9.1 4.0 0.039 0.048 1.6 x 10 ⁻¹⁹ 300 0.45 8.1 0.055 0.054 (D) 4.0 8.3 0.061 0.041 6.0 8.1 0.056 0.045 (E) 2.2 14.1 0.078 0.10 4.5 14.7 0.070 0.12 300 0.66 14.2 0.088 0.10 (E) 2.2 14.1 0.078 0.10 (F) 1.5 7.8 0.10 0.067 (F) 1.5 7.8 0.10 0.060 1.5 4.0 0.097 0.046 300 6.2 0.2 0.031 0.12 6.2 3.0 0.065 0.11 (G) 5.8 5.0 0.049 0.091 (G) 5.3 6.3 0.053 0.078 5.6 6.8 0.079 0.10 226 1.5 0.2 0.1 0.31 (H) 9.8 0.2 0.1 0.22 5.1 x 10 ⁻¹⁹ 226 0.4 0.2 0.1 0.21 226 0.4 0.2 0.1 0.21 226 0.4 0.2 0.1 0.21 226 0.4 0.2 0.1 0.21 226 0.4 0.2 0.1 0.21 226 0.4 0.2 0.1 0.21 226 0.4 0.2 0.1 0.21 226 (7) 0.3 0.2 0.1 0.21 226 (7) 0.3 0.2 0.1 0.21 226 (7) 0.3 0.2 0.1 0.21 226 (7) 0.3 0.2 0.1 0.21 226 (7) 0.3 0.2 0.1 0.21 226 (7) 0.3 0.2 0.1 0.21 226 (7) 0.3 0.2 0.1 0.21 226 (7) 0.3 0.2 0.1 0.21 226 (7) 0.3 0.2 0.1 0.21 226 (7) 0.3 0.2 0.1 0.21 226 (7) 0.3 0.2 0.1 0.21 226 (7) 0.3 0.2 0.1 0.21	300					0.050	
300		(A)					19
(B) 3.2 3.0 0.093 0.035 8.6 3.1 0.090 0.046 1.6 x 10 ⁻¹⁹ 300 0.82 4.0 0.037 0.040 1.2 4.2 0.028 0.043 (C) 6.7 4.0 0.055 0.063 9.1 4.0 0.039 0.048 1.6 x 10 ⁻¹⁹ 300 0.45 8.1 0.055 0.054 (D) 4.0 8.3 0.061 0.041 6.0 8.1 0.056 0.045 (E) 2.2 14.1 0.056 0.045 2.2 14.1 0.078 0.10 (E) 2.2 14.1 0.078 0.10 4.5 14.7 0.070 0.12 300 1.4 14.1 0.067 0.037 (F) 1.5 7.8 0.10 0.060 1.5 4.0 0.097 0.046 300 6.2 0.2 0.031 0.12 6.2 3.0 0.065 0.11 (G) 5.8 5.0 0.049 0.091 (G) 5.3 6.3 0.053 0.079 (F) 1.5 0.2 0.1 0.15 (H) 9.8 0.2 0.1 0.15 (H) 9.8 0.2 0.1 0.15 (I) 1.5 0.2 0.1 0.37 (I) 1.5 0.2 0.1 0.31 (II) 0.22 5.1 x 10 ⁻¹⁹ 226 0.4 0.2 0.1 0.37 (II) 0.21 226 0.4 0.2 0.1 0.21 226 0.4 0.2 0.1 0.21 226 0.4 0.2 0.1 0.21 226 0.4 0.2 0.1 0.21 226 0.1 0.21 226 0.1 0.3 0.2 0.1 0.21 226 0.1 0.21 226 0.1 0.3 0.2 0.1 0.21 226 0.3 0.3 0.2 0.1 0.21 226 0.3 0.3 0.2 0.1 0.21 226 0.4 0.2 0.1 0.21 226 0.1 0.21 226 0.1 0.21							1.4 x 10
8.6 3.1 0.090 0.046 1.6 x 10 ⁻¹⁹ 300 0.82 4.0 0.037 0.040 1.2 4.2 0.028 0.043 (C) 6.7 4.0 0.055 0.063 9.1 4.0 0.039 0.048 1.6 x 10 ⁻¹⁹ 9.2 4.0 0.014 0.030 1.0 x 10 ⁻¹⁹ 300 0.45 8.1 0.055 0.054 (D) 4.0 8.3 0.061 0.041 6.0 8.1 0.056 0.045 2.3 x 10 ⁻¹⁹ 300 0.66 14.2 0.088 0.10 (E) 2.2 14.1 0.078 0.10 (E) 2.2 14.1 0.078 0.10 4.5 14.7 0.070 0.12 300 1.4 14.1 0.067 0.037 (F) 1.5 7.8 0.10 0.060 1.5 4.0 0.097 0.046 300 6.2 0.2 0.31 0.12 (G) 5.8 5.0 0.049 0.091 (G) 5.8 5.0 0.049 0.091 (G) 5.3 6.3 0.053 0.078 5.6 6.8 0.079 0.10 5.5 13.5 0.050 0.060 226 1.5 0.2 0.1 0.31 (H) 9.8 0.2 0.1 0.37 6.2 x 10 226 0.4 0.2 0.1 0.37 (I) 1.2 0.2 0.1 0.37 226 0.4 0.2 0.1 0.21 226 0.4 0.2 0.1 0.21 226 1.1 0.3 0.2 0.1 0.21 226 1.2 0.2 0.1 0.21 226 1.1 0.3 0.2 0.1 0.21 226 1.1 0.21 226 0.4 0.2 0.1 0.21 226 1.1 0.21 226 1.1 0.3 0.2 0.1 0.21 226 1.1 0.21 226 1.1 0.21 226 1.1 0.3 0.2 0.1 0.21 226 1.1 0.21 226 1.1 0.21 226 1.1 0.21 226 1.1 0.21 226 1.1 0.21 226 1.1 0.2 0.2 0.1 0.21 226 1.2 0.2 0.1 0.21 226 1.2 0.2 0.1 0.21 226 1.1 0.21 226 1.1 0.21	300						
300 0.82 4.0 0.037 0.040 1.2 4.2 0.028 0.043 (C) 6.7 4.0 0.055 0.063 9.1 4.0 0.039 0.048 1.6 x 10-19 9.2 4.0 0.014 0.030 1.0 x 10-19 300 0.45 8.1 0.055 0.054 (D) 4.0 8.3 0.061 0.041 6.0 8.1 0.056 0.045 2.3 x 10-19 300 0.66 14.2 0.088 0.10 (E) 2.2 14.1 0.078 0.10 4.5 14.7 0.070 0.12 300 1.4 14.1 0.067 0.037 (F) 1.5 7.8 0.10 0.060 1.5 4.0 0.097 0.046 300 6.2 0.2 0.031 0.12 6.2 3.0 0.065 0.11 (G) 5.3 6.3 0.053 0.078 5.6 6.8 0.079 0.10 5.5 13.5 0.050 0.060 226 1.5 0.2 0.1 0.31 (H) 9.8 0.2 0.1 0.15 14.0 0.2 0.1 0.15 14.0 0.2 0.1 0.21 226 0.4 0.2 0.1 0.37 6.2 x 10-19 226 0.4 0.2 0.1 0.37 (I) 1.2 0.2 0.1 0.21 4.2 0.2 0.1 0.21 4.2 0.2 0.1 0.21 4.2 0.2 0.1 0.21 4.2 0.2 0.1 0.21 4.2 0.2 0.1 0.21 4.2 0.2 0.1 0.21 4.2 0.2 0.1 0.21 4.2 0.2 0.1 0.21 4.2 0.2 0.1 0.21 4.2 0.2 0.1 0.21		(B)					19
300 0.82 4.0 0.037 0.040 1.2 4.2 0.028 0.043 (C) 6.7 4.0 0.055 0.063 9.1 4.0 0.039 0.048 1.6 x 10-19 9.2 4.0 0.014 0.030 1.0 x 10-19 300 0.45 8.1 0.055 0.054 (D) 4.0 8.3 0.061 0.041 6.0 8.1 0.056 0.045 2.3 x 10-19 300 0.66 14.2 0.088 0.10 (E) 2.2 14.1 0.078 0.10 4.5 14.7 0.070 0.12 300 1.4 14.1 0.067 0.037 (F) 1.5 7.8 0.10 0.060 1.5 4.0 0.097 0.046 300 6.2 0.2 0.031 0.12 6.2 3.0 0.065 0.11 (G) 5.3 6.3 0.053 0.078 5.6 6.8 0.079 0.10 5.5 13.5 0.050 0.060 226 1.5 0.2 0.1 0.31 (H) 9.8 0.2 0.1 0.15 14.0 0.2 0.1 0.15 14.0 0.2 0.1 0.21 226 0.4 0.2 0.1 0.37 6.2 x 10-19 226 0.4 0.2 0.1 0.37 (I) 1.2 0.2 0.1 0.21 4.2 0.2 0.1 0.21 4.2 0.2 0.1 0.21 4.2 0.2 0.1 0.21 4.2 0.2 0.1 0.21 4.2 0.2 0.1 0.21 4.2 0.2 0.1 0.21 4.2 0.2 0.1 0.21 4.2 0.2 0.1 0.21 4.2 0.2 0.1 0.21 4.2 0.2 0.1 0.21							1.6 x 10
(C) 6.7	300						
9.1 4.0 0.039 0.048 1.6 x 10-19 9.2 4.0 0.014 0.030 1.0 x 10-19 300 0.45 8.1 0.055 0.054 (D) 4.0 8.3 0.061 0.041 6.0 8.1 0.056 0.045 2.3 x 10-19 300 0.66 14.2 0.088 0.10 (E) 2.2 14.1 0.078 0.10 4.5 14.7 0.070 0.12 300 1.4 14.1 0.067 0.037 (F) 1.5 7.8 0.10 0.060 1.5 4.0 0.097 0.046 300 6.2 0.2 0.31 0.12 6.2 3.0 0.065 0.11 5.8 5.0 0.049 0.091 (G) 5.3 6.3 0.053 0.078 5.6 6.8 0.079 0.10 5.5 13.5 0.050 0.060 226 1.5 0.2 0.1 0.31 (H) 9.8 0.2 0.1 0.15 (H) 9.8 0.2 0.1 0.22 5.1 x 10-19 226 0.4 0.2 0.1 0.37 (I) 1.2 0.2 0.1 0.21 226 (I) 0.3 0.2 0.1 0.21							
9.2 4.0 0.014 0.030 1.0 x 10		(C)	6.7				-19
9.2 4.0 0.014 0.030 1.0 x 10			9.1				1.6 x 10
300			9.2				1.0 x 10 13
(D) 4.0 8.3 0.061 0.041 6.0 8.1 0.056 0.045 2.3 x 10 ⁻¹⁹ 300 0.66 14.2 0.088 0.10 (E) 2.2 14.1 0.078 0.10 4.5 14.7 0.070 0.12 300 1.4 14.1 0.067 0.037 (F) 1.5 7.8 0.10 0.060 1.5 4.0 0.097 0.046 300 6.2 0.2 0.31 0.12 6.2 3.0 0.065 0.11 (G) 5.8 5.0 0.049 0.091 5.8 6.3 0.053 0.078 5.6 6.8 0.079 0.10 5.5 13.5 0.050 0.060 226 1.5 0.2 0.1 0.31 (H) 9.8 0.2 0.1 0.15 (H) 9.8 0.2 0.1 0.22 5.1 x 10 ⁻¹⁹ 226 0.4 0.2 0.1 0.37 226 0.4 0.2 0.1 0.37 226 (I) 0.3 0.2 0.1 0.21 4.2 0.2 0.1 0.21 4.2 0.2 0.1 0.21 4.2 0.2 0.1 0.21 4.2 0.2 0.1 0.21 4.2 0.2 0.1 0.21 4.2 0.2 0.1 0.21 4.2 0.2 0.1 0.21 4.2 0.2 0.1 0.21 4.2 0.2 0.1 0.21	300		0.45				
6.0 8.1 0.056 0.045 2.3 x 10 ⁻¹⁹ 300 0.66 14.2 0.088 0.10 (E) 1.0 14.3 0.080 0.11 (E) 2.2 14.1 0.078 0.10 4.5 14.7 0.070 0.12 300 1.4 14.1 0.067 0.037 (F) 1.5 7.8 0.10 0.060 1.5 4.0 0.097 0.046 300 6.2 0.2 0.31 0.12 6.2 3.0 0.065 0.11 (G) 5.8 5.0 0.049 0.091 (G) 5.3 6.3 0.053 0.078 5.6 6.8 0.079 0.10 5.5 13.5 0.050 0.060 226 1.5 0.2 0.1 0.31 (H) 9.8 0.2 0.1 0.15 (H) 9.8 0.2 0.1 0.15 (H) 9.8 0.2 0.1 0.22 5.1 x 10 ⁻¹⁹ 14.0 0.2 0.1 0.37 6.2 x 10 226 0.4 0.2 0.1 0.21 (I) 1.2 0.2 0.1 0.21 4.2 0.2 0.1 0.21 226 (T) 0.3 0.2 0.1 0.21 226 (T) 0.3 0.2 0.1 0.21		(D)	3.2	8.0			
300		(D)	4.0	8.3			-19
300			6.0		0.056		2.3 x 10
(E) 1.0 14.3 0.080 0.11 2.2 14.1 0.078 0.10 4.5 14.7 0.070 0.12 300 1.4 14.1 0.067 0.037 (F) 1.5 7.8 0.10 0.060 1.5 4.0 0.097 0.046 300 6.2 0.2 0.31 0.12 6.2 3.0 0.065 0.11 6.2 3.0 0.065 0.11 (G) 5.8 5.0 0.049 0.091 5.8 6.3 0.053 0.078 5.6 6.8 0.079 0.10 5.5 13.5 0.050 0.060 226 1.5 0.2 0.1 0.31 (H) 9.8 0.2 0.1 0.15 9.8 0.2 0.1 0.15 14.0 0.2 0.1 0.22 5.1 x 10-19 14.0 0.2 0.1 0.37 6.2 x 10 226 0.4 0.2 0.1 0.37 (I) 1.2 0.2 0.1 0.21 4.2 0.2 0.1 0.21 4.2 0.2 0.1 0.21	300		0.66	14.2	0.088		
4.5 14.7 0.070 0.12 300 1.4 14.1 0.067 0.037 (F) 1.5 7.8 0.10 0.060 1.5 4.0 0.097 0.046 300 6.2 0.2 0.031 0.12 6.2 3.0 0.065 0.11 6.3 5.8 5.0 0.049 0.091 6.5 3 6.3 0.053 0.078 5.6 6.8 0.079 0.10 5.5 13.5 0.050 0.060 226 1.5 0.2 0.1 0.31 (H) 9.8 0.2 0.1 0.15 (H) 9.8 0.2 0.1 0.22 5.1 x 10-19 14.0 0.2 0.1 0.37 6.2 x 10 226 0.4 0.2 0.1 0.37 6.2 x 10 226 1.10 0.3 0.2 0.1 0.21 4.2 0.2 0.1 0.21 4.2 0.2 0.1 0.21		(7)	1.0	14.3	0.080		
300 1.4 14.1 0.067 0.037 (F) 1.5 7.8 0.10 0.060 1.5 4.0 0.097 0.046 300 6.2 0.2 0.31 0.12 6.2 3.0 0.065 0.11 5.8 5.0 0.049 0.091 (G) 5.3 6.3 0.053 0.078 5.6 6.8 0.079 0.10 5.5 13.5 0.050 0.060 226 1.5 0.2 0.1 0.31 (H) 9.8 0.2 0.1 0.15 (H) 9.8 0.2 0.1 0.22 14.0 0.2 0.1 0.37 6.2 x 10 226 0.4 0.2 0.1 0.37 (I) 1.2 0.2 0.1 0.11 (I) 1.2 0.2 0.1 0.21 4.2 0.2 0.1 0.21 4.2 0.2 0.1 0.21 226 (T) 0.3 0.2 0.1 0.34		(E)	2.2	14.1	0.078		
300			4.5	14.7	0.070		
(F) 1.5 7.8 0.10 0.060 1.5 4.0 0.097 0.046 300 6.2 0.2 0.031 0.12 6.2 3.0 0.065 0.11 5.8 5.0 0.049 0.091 (G) 5.3 6.3 0.053 0.078 5.6 6.8 0.079 0.10 5.5 13.5 0.050 0.060 226 1.5 0.2 0.1 0.31 (H) 9.8 0.2 0.1 0.15 (H) 9.8 0.2 0.1 0.22 5.1 x 10-19 14.0 0.2 0.1 0.37 6.2 x 10 226 0.4 0.2 0.1 0.37 (I) 1.2 0.2 0.1 0.11 (I) 1.2 0.2 0.1 0.21 4.2 0.2 0.1 0.21 226 (T) 0.3 0.2 0.1 0.21	300			14.1	0.067	0.037	
1.5		(F)	1.5	7.8	0.10	0.060	
300 6.2 0.2 0.031 0.12 6.2 3.0 0.065 0.11 6.3 5.8 5.0 0.049 0.091 6.5 5.3 6.3 0.053 0.078 5.6 6.8 0.079 0.10 5.5 13.5 0.050 0.060 226 1.5 0.2 0.1 0.31 6.1 1.5 0.2 0.1 0.15 9.8 0.2 0.1 0.22 5.1 x 10 -19 14.0 0.2 0.1 0.37 6.2 x 10 226 0.4 0.2 0.1 0.37 6.2 x 10 226 0.4 0.2 0.1 0.11 6.1 1.2 0.2 0.1 0.21 4.2 0.2 0.1 0.21 226 0.3 0.3 0.2 0.1 0.21 226 0.3 0.3 0.2 0.1 0.34				4.0	0.097	0.046	4
(G) 5.8 5.0 0.049 0.091 5.3 6.3 0.053 0.078 5.6 6.8 0.079 0.10 5.5 13.5 0.050 0.060 226 1.5 0.2 0.1 0.31 (H) 9.8 0.2 0.1 0.15 14.0 0.2 0.1 0.37 6.2 x 10 226 0.4 0.2 0.1 0.37 (I) 1.2 0.2 0.1 0.11 (I) 1.2 0.2 0.1 0.21 4.2 0.2 0.1 0.21 226 (T) 0.3 0.2 0.1 0.34	300		6.2	0.2	0.031		
(G) 5.8 5.0 0.049 0.091 5.3 6.3 0.053 0.078 5.6 6.8 0.079 0.10 5.5 13.5 0.050 0.060 226 1.5 0.2 0.1 0.31 (H) 9.8 0.2 0.1 0.15 14.0 0.2 0.1 0.37 5.1 x 10-19 14.0 0.2 0.1 0.37 6.2 x 10 226 0.4 0.2 0.1 0.11 (I) 1.2 0.2 0.1 0.21 4.2 0.2 0.1 0.21 226 (T) 0.3 0.2 0.1 0.34			6.2	3.0	0.065	0.11	
(G) 5.3 6.3 0.053 0.078 5.6 6.8 0.079 0.10 5.5 13.5 0.050 0.060 226 1.5 0.2 0.1 0.31 (H) 1.5 0.2 0.1 0.15 9.8 0.2 0.1 0.22 5.1 x 10-19 14.0 0.2 0.1 0.37 6.2 x 10 226 0.4 0.2 0.1 0.11 (I) 1.2 0.2 0.1 0.21 4.2 0.2 0.1 0.21 226 (T) 0.3 0.2 0.1 0.34				5.0	0.049	0.091	
5.6 6.8 0.079 0.10 5.5 13.5 0.050 0.060 226 1.5 0.2 0.1 0.31 (H) 1.5 0.2 0.1 0.15 9.8 0.2 0.1 0.22 5.1 x 10-19 14.0 0.2 0.1 0.37 6.2 x 10 226 0.4 0.2 0.1 0.11 (I) 1.2 0.2 0.1 0.21 4.2 0.2 0.1 0.21 226 (T) 0.3 0.2 0.1 0.34		(G)			0.053	0.078	
5.5 13.5 0.050 0.060 226 1.5 0.2 0.1 0.31 (H) 1.5 0.2 0.1 0.15 9.8 0.2 0.1 0.22 5.1 x 10-19 14.0 0.2 0.1 0.37 6.2 x 10 226 0.4 0.2 0.1 0.11 (I) 1.2 0.2 0.1 0.21 4.2 0.2 0.1 0.21 226 (T) 0.3 0.2 0.1 0.34					0.079	0.10	
226 1.5 0.2 0.1 0.31 (H) 1.5 0.2 0.1 0.15 9.8 0.2 0.1 0.22 5.1 x 10 ⁻¹⁹ 14.0 0.2 0.1 0.37 6.2 x 10 ⁻¹⁹ 226 0.4 0.2 0.1 0.11 (I) 1.2 0.2 0.1 0.21 4.2 0.2 0.1 0.21 226 (T) 0.3 0.2 0.1 0.34					0.050	0.060	
(H) $\begin{array}{cccccccccccccccccccccccccccccccccccc$	226		1.5		0.1	0.31	
(H) 9.8 0.2 0.1 0.22 5.1 x 10 ⁻¹⁹ 14.0 0.2 0.1 0.37 6.2 x 10 ⁻¹⁹ 226 0.4 0.2 0.1 0.11 (I) 1.2 0.2 0.1 0.21 4.2 0.2 0.1 0.21 226 (T) 0.3 0.2 0.1 0.34					0.1	0.15	-10
14.0 0.2 0.1 0.37 6.2 x 10 226 0.4 0.2 0.1 0.11 (I) 1.2 0.2 0.1 0.21 4.2 0.2 0.1 0.21 226 (T) 0.3 0.2 0.1 0.34		(H)				0.22	5.1 x 10 19
226 0.4 0.2 0.1 0.11 (I) 1.2 0.2 0.1 0.21 4.2 0.2 0.1 0.21 226 (I) 0.3 0.2 0.1 0.34							6.2 x 10 ⁻¹⁹
(I) 1.2 0.2 0.1 0.21 4.2 0.2 0.1 0.21 226 (I) 0.3 0.2 0.1 0.34	226						
4.2 0.2 0.1 0.21 226 (T) 0.3 0.2 0.1 0.34		(I)				0.21	
226 (7) 0.3 0.2 0.1 0.34							
77	226					0.34	
		(J)			0.1	0.30	

^{*} The total pressure was 25.0 Torr at 300° K and 22.0 Torr at 226° K.

Typical initial reactor concentrations were: $\begin{bmatrix} \text{HNO}_2 \end{bmatrix} = 0.003-0.005$ Torr $\begin{bmatrix} \text{NO} \end{bmatrix} = 0.03-0.06$ Torr; $\begin{bmatrix} \text{NO}_2 \end{bmatrix} = 0.02-0.04$ Torr. Each group of data was obtained during one day.

^{**} These rate constants were derived by assuming that k' arises totally from reaction (1).

data were taken during one day in order to minimize the effects of changes in the reactor surface condition.

The effect of water is best illustrated by data series G in Table 2, in which the water content was varied by a factor of 75 while ozone and HNO_3 were maintained essentially constant. From the values of k' in this series of data, it can be seen that water does not systematically affect the HNO_2 decay rate in the presence of O_3 .

The effect of ozone concentration on the HNO₂ decay is also presented in Table 2 at several initial reactant concentrations and is shown graphically in Fig. 3 for the runs with the lowest water concentration (series A, Table 2). The data in Fig. 3, obtained for ozone concentrations between 0.97 and 10.4 Torr, can be fitted by the same exponential decay curve, within a 10-15% scatter. As presented in Table 2, the same result was obtained for HNO₂ decay measured with a 17-fold variation in ozone concentration in the presence of 3 Torr of water (series B), with a 13-fold ozone concentration variation in the presence of 8 Torr of water (series D), and with a 7-fold ozone concentration variation variation in the presence of 14 Torr of water (series E). This is strong evidence that any reaction between ozone and nitrous acid is not homogeneous and bimolecular under our experimental conditions.

The data presented above cannot be used to rule out the possibility that the reaction is zero order in ozone concentration. This would probably occur only if the reaction were heterogeneous and if the ozone concentration were sufficiently high to saturate the active surface sites. At the ozone pressures employed, 0.9-10 Torr, this seems unlikely. In addition, the nitrous acid decay rates observed in these experiments were of the same order of magnitude as those observed for the heterogeneous self-decay of HNO₂ in the absence of ozone and for the decay of HNO₂ in the presence of the HNO₃ concentrations reported in Table 2. Therefore, it is also unlikely that the decay of HNO₂ in the presence of ozone is a result of a heterogeneous reaction between HNO₂ and ozone. Thus, the experiments show no definitive evidence for a reaction between ozone and nitrous acid at room temperature.

 226° K Results. A number of experiments were also performed at 226° K (series H,I, and J in Table 2). In these experiments the water present (\leq 0.2 Torr) came only from the equilibrium HNO₂ mixture. The HNO₂ decays were exponential over the first 80% of the decay, and they were independent ($\sigma \approx 50$ %) of the ozone concentration from 0.4 to 19 Torr. However, the pseudo-first order

decays were an average of a factor of 4 faster than those recorded at room temperature. The reason for the increase in the HNO₂ decay is not understood, although it is presumed to arise from changes in the effect of surface activity on reactions (12) and (13). In any event, the invariance of the decay rate over a factor of 50 variation in ozone concentration demonstrates that any reaction between ozone and nitrous acid cannot be homogeneous and bimolecular at 226°K, in agreement with the room temperature data.

IV. Upper Limit to the Bimolecular Rate Constant for the HNO_2-O_3 Reaction As has been described above, the HNO_2 decay rate is independent of the ozone concentration at 226° and 300° K. Therefore, the data in Table 2 can only be used to determine an upper limit to the homogeneous, bimolecular rate constant for reaction (1). Assuming that all of the HNO_2 decay arises from reaction (1), the rate constant for the assumed bimolecular reaction can be obtained from the measured pseudo-first order rate constant and the known ozone concentration, $k_1 = k'/[O_3]$. Table 2 includes the upper limit values to k_1 calculated from experiments at the highest ozone concentrations. The values so derived are reasonably reproducible and the smallest values at 300° and 226° K are 1×10^{-19} cm molecule 1° sec 1° and 1° 0 and 1° 1 cm molecule 1° 2 cm molecule 1° 3 cm molecule 1° 4 cm molecule 1° 5 fold variation in ozone concentration brings about a maximum 1° 5 variation in the observed decay rate of 1° 6, these upper limits are conservative.

V. Implications for Stratospheric Chemistry

The chemistry of NO $_{\rm X}$ compounds in the stratosphere is summarized in Table 1. (1-3,5) The reactions of NO $_{\rm 3}$ and N $_{\rm 2}$ O $_{\rm 5}$ have not been included in the calculations because they are not well understood. (2,5) If reactions (1) and (2) are not included, the mechanism outlined in Table 1 predicts (5) an NO density profile which is essentially constant for the 16 to 40 km region of the stratosphere. However, Schiff (5) has recently demonstrated that the inclusion of reactions (1) and (2), with sufficiently large rate constants, would convert much of the NO and NO $_{\rm 2}$ into nitric acid, resulting in up to a 10-fold decrease in NO and NO $_{\rm 2}$ in the 20 km region. This would result in a drop in the ozone destruction rate by NO $_{\rm X}$ compounds by about a factor of 2 in that region. (10)

Using steady state assumptions for NO, NO₂, HNO₂, and HNO₃, the following relationships between the various NO_x compounds can be derived from the mechanism presented in Table 1 (see Schiff $^{(5)}$).

$$\frac{[NO_2]}{[NO]} = \frac{k_3 [O_3] + J_9 [HNO_3] / [NO] + k_{11} [HO_2]}{k_4 [O] + J_5 + k_2 [HO_2] + k_7 [OH]}$$
(I')

Due to the small effect of many of the terms, (I') reduces to

$$\frac{\begin{bmatrix} NO_2 \end{bmatrix}}{\begin{bmatrix} NO \end{bmatrix}} = \frac{k_3 \begin{bmatrix} O_3 \end{bmatrix}}{k_4 \begin{bmatrix} O \end{bmatrix} + J_5} = a$$
 (I)

$$\frac{\begin{bmatrix} \text{HNO}_2 \end{bmatrix}}{\begin{bmatrix} \text{NO} \end{bmatrix}} = \frac{\text{ak}_2 \begin{bmatrix} \text{HO}_2 \end{bmatrix} + \text{k}_6 \begin{bmatrix} \text{OH} \end{bmatrix}}{\text{J}_8 + \text{k}_1 \begin{bmatrix} \text{O}_3 \end{bmatrix}} = \text{b}$$
(II)

Where

$$R = \frac{k_1 \left[O_3 \right]}{k_1 \left[O_3 \right] + J_8}$$
 (IV)

Equations (I)-(IV) can be evaluated if all the rate constants and reactant concentrations are known. The best estimates for these values are presented in Table 1 for altitudes of 22 km and 30 km. The values of equations (I) - (IV) are given in Table 3 as a function of the rate constant for reaction (1). In these calculations, we have used the value of k_2 (2 x 10^{-12} cm molecule sec⁻¹) chosen by Schiff. 5

The fractional distribution of the four NO $_{\rm X}$ species under discussion can be obtained from the data in Table 3 by solving the set of simultaneous equations, (I) - (III), and setting the total NO $_{\rm S}$ equal to 1.0. The calculated

Table 3 - Evaluation of Equations (I) - (III) as a Function of the Value of k_1

	$k_1^* = 10^{-19}$	10 ⁻¹⁸	10-16	10 ⁻¹⁴
	Alti	tuđe = 22 km		
NO 2	4.2	4.2	4.2	4.2
[HNO ₂]	0.131	0.129	0.0586	0.00105
[HNO ₃]	2.38	2.81	24.0	41.3
R	0.0012	0.012	0.55	0.99
	Alt	itude = 30 km		
[NO ₂]	1.7	1.7	1.7	1.7
[HNO ₂]	0.0538	0.0535	0.0368	0.00114
[NO ₂]	0.417	0.440	2.16	5.83
R	0.00046	0.0046	0.32	0.99

^{*} k_1 has the units of cm molecule $^{-1}$ sec $^{-1}$.

results are presented in Table 4 at altitudes of 22 km and 30 km as a function of the value of k1. There is no effect on the relative NO concentrations when k_1 values below 1 x 10⁻¹⁹ are employed, and the calculations indicate that the maximum perturbation on the $NO_{\mathbf{X}}$ concentrations, which occurs at 22 km, would be less than 5% using the measured upper limit to k_1 , 5 x 10⁻¹⁹ cm molecule ^{-1}sec $^{-1}$. This is a very small perturbation and indicates that the effect of reactions (1) and (2) will not be large unless k_2 is much larger than 2 x 10^{-12} cm molecule sec . The value of k_2 has not yet been directly determined, and, in fact, there is evidence that pernitric acid, not nitrous acid, is the primary reaction product. (11) This fact, coupled with a recent indirect determination 6 of k2, points to a formation rate for nitrous acid via reaction (2) which is slower than that used in the present calculations. If this is correct, the effect of reactions (1) and (2) in the stratosphere would further decrease in importance. Thus, current evidence strongly suggests that the homogeneous, bimolecular reactions (1) and (2) have a negligible effect on the chemistry of the stratosphere.

Table 4 - Fractional Distribution of NO $_{\rm X}$ Among Its Major Components as a Function of the Value of ${\bf k}_1$

or a k 10 -13	c ₁ * = 10 ⁻¹⁹	10 ⁻¹⁸	10 ⁻¹⁶	10 ⁻¹⁴
	Altitu	ıde = 22 km		
NO	6.5(-2)**	5.8(-2)	9.4(-3)	5.6(-3)
NO ₂	2.7(-1)	2.5(-1)	4.0(-2)	2.4(-2)
HNO ₂	8.5(-3)	7.5(-3)	5.5(-4)	5.9(-6)
HNO ₃	6.5(-1)	6.9(-1)	9.5(-1)	9.7(-1)
	Altitu	ide = 30 km		
NO	2.9(-1)	2.9(-1)	1.6(-1)	7.9(-2)
NO ₂	4.9(-1)	4.9(-1)	2.7(-1)	1.3(-1)
HNO ₂	1.6(-2)	1.5(-2)	5.7(-3)	9.0(-5)
HNO ₃	2.0(-1)	2.1(-1)	5.7(-1)	7,9(-1)

^{*} k_1 has the units of cm³molecule⁻¹sec⁻¹
** $6.5(-2) = 6.5 \times 10^{-2}$

References

- la. "Proceedings of the Fourth Conference on the Climatic Impact Assessment Program." T. M. Hard, A. J. Broderick, Eds., U.S. Department of Transportation Report No. DOT-TSC-OST-75-38 (August, 1976).
- b. "The Natural Stratosphere of 1974," CIAP Monograph 1, A. J. Grobecker, Ed., Department of Transportation Report No. DOT-TSC-75-51 (September, 1975).

Both documents are available through the National Technical Information Service, Springfield, Virginia, 22161.

- 2. H.S. Johnston, Advances in Environmental Science and Technology $\underline{4}$, 263-380 (1974).
- H.S. Johnston, G. Whitten and J. Birks, Journal of Geophysical Research 78, 6107-6135 (1973); F.R. Gilmore, Journal of Geophysical Research 80, 4553-4554 (1975).
- M.J. Molina and F.S. Rowland, Nature <u>249</u>, 810-812 (1974); F.S. Rowland and M.J. Molina, Reviews of Geophysics and Space Physics <u>13</u>, 1-35 (1975).
- See, for example, H.I. Schiff in "Atmospheres of Earth and the Planets".
 B.M. McCormac, Ed., D. Reidel Publishing Co., Dordrecht, Holland (1975)
 pp. 21-43.
- 6. R.A. Cox and S.A. Penkett, Journal of Photochemistry 4, 139-153 (1975).
- 7. R.A. Cox, Journal of Photochemistry 3, 175-188 (1974).
- 8a. E.W. Kaiser and C. H. Wu, Journal of Physical Chemistry, in press.
- b. E. W. Kaiser and C.H. Wu, Journal of Physical Chemistry 81, 187-190 (1977).
- 9. P.G. Ashmore and B.J. Tyler, Journal of the Chemical Society, 1017 (1961).
- See the detailed discussion of Johnston, reference 2, of the effect of NO levels on stratospheric ozone concentration.
- 11. H. Niki, P.D. Maker, C.M. Savage, and L.P. Breitenbach, Chemical Physics Letters 45, 564-566 (1977).